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Extensively conjugated tetracyanothienoquinodimethanes are Scheme 1 2

currently attracting much attention in terms of advanced molecular guo™S«“og, BUO > ogu . BuO”">< 084
: > . i for 4a iii for 6a

electronics materials. In 1974, the prototypical compoliadvas ﬁ i for 4b—f = iv for 6b—f Ncﬁ:(cn
dgveloped as the first heteroqqinoid analogue of tetracyanoquino-H—"4 = X N VST NN
dimethane (TCNQ) by Gronowitz and Uppatrdout found no use dat(n=1-6) 6a X = Br (96%) 52 23%)
as an electron acceptbHowever, we later found that the bi- and 6b—f X = | (87-99%) 5b—f (15-71%)
terthienoguinoid hom_0|09uekb and1c for_me‘_’ Cpnductlve mo- a Reagents and conditions: (i) NBS, DMF, room temperature, 30 h; (ii)
lecular complexes with TTF and TTA This finding led to the NIS, 4:1 DMF-CHCl, room temperature, 311 h; (i) TCNEO, Cu,
subsequent developments of their various derivatives as goodBrCH,CH,Br, reflux, 3.5 d; (iv) NaH, CH(CN),, Pd(PPb)4, dppf, THF,
electron accepto@ﬁ Furthermore, H|guch| and co-workers repor‘[ed reflux, 10-40 h then diluted HCI, air oxidation, room temperture, 0.5 h.
a large third-order nonlinear optical property for the quaterthieno-
quinoid derivative2.* Quite recently, Pappenfus and co-workers
found an unusqal gmbip_ola_r fiesld-e_ffect transistor performgnce for member 5a, becauseda was less reactive to NIS, and the
the_ tert_hlenoqum0|d derivativg® Evidently, the t_etracyanothleno- _dibromothiophen@a instead obtained with NBS did not undergo
qumogﬂmethane sy_stems ha_ve a gre_at potential as optoelgctron|c§he Takahashi reaction. Alternativeba was obtained in 23% yield
materials, gnd thglr yersatllg functions are endowed with the by treating 6a with tetracyanoethylene oxide in refluxing 1,2-
extended thienoquinoidal conjugated structures. A great draWbadeibromoethane for 3.5 d according to the Gronowitz protocol for

of these compounds is, however, that they become insoluble N e synthesis ofal
All the compound$a—f as well assa—f were characterized by

common solvents with quinoid extension. This solubility problem
ga?‘p%rs If.“”hh‘?r Sr{”the“c ﬁXte“S'o';]' ‘r’]\.’e rﬁ"e“t'y .d.e"f"’pzd ‘.’Vﬁ“' NMR, MS, IR, and elemental analyses. They are highly soluble in
ebl_neb oligot 'OE lene$|, where eac_ﬁtTlg_p fene gnlj[ IS gse _W't common solvents, such as chloroform and THF; for example, the
a bis(butoxymethyl)cyclopentane rifgthis fused ring is quite molar solubilities of5a—f in chloroform are>10-2 mol/L. They
are deeply colored in solid and solution phases and show pro-

helpful for solubilization, accordingly, allowing the formation of a
series of extraordinarily long oligothiophenes up to the 96-mer. It nounced color changes with quinoid extension. Figure 1 demon-
strates the electronic absorption spectr&aff measured in THF,

has thus occurred to us that this structural modification would be
and Table 1 compares the wavelengths of the absorption bands.

drastically decreased with chain extension down to 15%5for
This approach could not be applied to the synthesis of the first

also effective for the solubility problem of the thienoquinoid

systgms. Here we report the. prgparation and properties of a series,l-he strong absorption bands&d, 5b, and5cin the visible region
of highly extensive thienoquinoid compounga—. are responsible for the respective solution colors yellow, magenta,
Hex and sky blue. This color-determining band for the higher homo-

NC>=((=»=<CN NC //={_ s N Ne _/A\__s_[//A\_LCN logues is red-shifted to the near-infrared region, and, as a result,
ne Y ST/nen Ng VST )=2enneg S )= S N the solution of5d is discolored to only a faint gray. Furthermore,
H Bu

fa—c (n=1-3) 2 . the solutions obe and5f are again deeply colored to dark brown
and violet, respectively, owing to the following red-shifted absorp-
Buo OBu BuG OBu tion bands. In particular, the red-shift of the first excitation band
/A ne_ =y N of 5f is very remarkable: the-00 transition peak appears at 1371
§"/n NC S /noN nm and the absorption edge extends to 1600 nm. It is worth noting
4 (n = up to 96) 5a—f (n=1-6) that such dyes with absorptions beyond 1000 nm are very few

among closed-shell organic compourid¥.

To understand the origin of the deep coloration, the HOMO and
LUMO levels of 5a—f were examined by measuring their cyclic
voltammograms in benzonitrile (Figure S1, Supporting Information).
Table 1 also compares the half-wave reduction and oxidation

Compound$a—f were prepared from the corresponding oligo-
thiophenedta—f, as shown in Scheme 1. Treatmentbff with
2 equiv of NIS in 4:1 DMF-chloroform at room temperature for
3—11 h gave the corresponding diiodo derivatiges-f in excellent
yields (87,_99%)' According to the Takahgshi methbﬂ;?—f were potentials. Upon sweeping down t61.0 V, the first membeba
then su_bjec_ted to Rd(O)-promoted coupling with sodium dicyano- demonstrates two reversible one-electron reduction waves whose
methanide in refluxing tetrahydrofuran for @0 h, followed by half-wave potentials are0.09 and—0.65 V vs Ag/AgCl. The first
air oxidation to give the quinoid oligothiophengb—f. The yield wave of the second memb&b shows a small cathodic shift, while
of 5b was high (71%), but the yields of the higher homologues the second wave shows a large anodic shift. In the tiiedthe
 Hiroshima University. two waves are combined at0.28 V. In further higher homologues
# Osaka University. 5d—f, the combined wave becomes sharper and is little by little
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Figure 1. Electronic absorption spectra 6&—f in THF.

400 60O 1400 1800

Table 1. Electronic Absorption Maxima, Half-Wave Redox
Potentials, and Nitrile Vibrational Frequencies of 5a—f
compd Amadnm?@ E,edive E; % IVP venlem=1e
5a 392,412 (4.47) —0.09,-0.65 d 2226.1
5b 518, 548 (4.99) -0.21,-046 d 22145
5c 596 sh, 657 (5.06), —0.28 +1.18 2206.8
696
5d 715,788 (5.27), 872, —0.21 +0.80, 2201.0
966 sh +1.45
5e 820, 913 (5.45), 1058, —0.16 +0.55, 2199.1
1203 +1.05
5f 1012 (5.05), 1169, —-0.12 +0.38, 2195.3
1371 +0.78

aMeasured in THF. For the most intense peak, the molar absorption
coefficient in logarithmic units is given in parenthese¥oltammetric
conditions: RE, Ag/AgCl; WE, Pt; solvent, PhCN; SE, BiPFs. ¢ Mea-
sured on KBr disk9 No oxidation wave below 1.5 \£Irreversible.

shifted to higher potentials. On the other hand, in the anodic
sweeping up tot1.5 V, 5a and5b show no oxidation waves. For

5c, however, an oxidation wave appears as a result of the increasing (

quinoidal extension. Fosd—f, not only the first oxidation wave

but also the second one are observed. It is thus understandable that (3)

marked extension of the thienoquinoidal part makes these higher
homologues highly amphoteric redox systefs.

The first excitation bands da—f may be formally represented
as an intramolecular charge-transfer transition from the thieno-
quinoidal moiety to the dicyanomethylene moiety, supported by
the red shifts of the absorption bands in polar solvents (Table S1,
Supporting Information). The increasing polar structure$aff
with quinoid extension are corroborated by consecutive low-
frequency shifts of the nitrile vibrational frequencies (see Table
1)12

We have noticed that, although the first excitation bandsaefe
steadily grow up with chain extension, the bandbbin the near-
infrared region decreases when compared to thagaind instead,

the second band in the visible region increases. Electronic spectra (8)

at variable temperatures (Figure S2) and in different solvents (Figure
S3) revealed that another species is involved in equilibrium with

the thienoquinoid speciés. Increasing temperatures and less polar

solvents favor the fraction showing the visual band. Interestingly,

the NMR spectra obe and everbf showed no signals due to the

these results as well as Chichibabin’s hydrocarfomwith an
unusually large amount of biradical characferne have speculated
that a biradical specie8 exists in the equilibrium mixture. The
fractions of 8e and 8f are estimated on the basis of the ESR
intensities to be 2.8% and 29%, respectively. The increasing fraction
of 8f is caused by stabilization due to a gain of large aromaticity
from the increasing thienoquinoid rings.

é i : ;” .CN
5e,f 8e,f

In conclusion, we have succeeded in the development of a series
of extensive quinoidal oligothiophen8&a—f with high solubilities
in common solvents. They are highly amphoteric redox systems,
which show strong electronic absorptions in the visible to near-
infrared region. The higher homologuBef exist as equilibrium
mixtures with the biradical speci&gf.
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